ГЕОЛОГІЯ ТА РОЗВІДКА НАФТОВИХ І ГАЗОВИХ РОДОВИЩ

УДК 550.830

ОБҐРУНТУВАННЯ МОЖЛИВОСТІ КАРТУВАННЯ НАФТОГАЗОПЕРСПЕКТИВНИХ ОБ'ЄКТІВ В УМОВАХ ПІВНІЧНО-ЗАХІДНОЇ ЧАСТИНИ ШЕЛЬФУ ЧОРНОГО МОРЯ НА ОСНОВІ СЕЙСМОГРАВІТАЦІЙНОГО МОДЕЛЮВАННЯ

О.П.Петровський, Б.Б.Габльовський, Н.С.Ганженко, Т.О.Федченко

ІФНТУНГ, 76019, м. Івано-Франківськ, вул. Карпатська, 15, тел. (0342) 501041, e-mail: geobip@optima.com.ua

Розглядається процес визначення впливу родовищ вуглеводнів Причорноморсько-Кримської нафтогазоносної області на поведінку гравітаційного поля. На прикладі Голіцинського газоконденсатного родовища проілюстровано основні етапи процесу гравітаційного моделювання. Для кожного з типів родовищ: газових, газоконденсатних і нафтових побудовані діаграми зміни гравітаційного ефекту з його ранжуванням за амплітудою. Проведено статистичний аналіз отриманих величин та побудовано просторову карту розподілу гравітаційного ефекту в межах території Причорноморсько-Кримської нафтогазоносної області. Аналіз отриманих результатів показав значимість розрахованих величин аномалій гравітаційного поля, що свідчить про можливість застосування методів інтегрального сейсмогравітаційного моделювання для детального вивчення геологічної будови та прогнозування ділянок розвитку порід з покращеними колекторськими властивостями в умовах північно-західної частини шельфу Чорного моря.

Ключові слова: північно-західний шельф Чорного моря, родовища Причорноморсько-Кримської нафтогазоносної області, гравірозвідка, гравітаційний ефект, сейсмогравітаційне моделювання.

Рассматривается процесс определения влияния месторождений углеводородов Причерноморско-Крымской нефтегазоносной области на поведение гравитационного поля. На примере Голицынского газоконденсатного месторождения проиллюстрированы основные этапы процесса гравитационного моделирования. Для каждого из типов месторождений: газовых, газоконденсатных и нефтяных построены диаграммы изменения гравитационного эффекта с его ранжированием по амплитуде. Проведен статистический анализ полученных величин и построена пространственная карта распределения гравитационного эффекта в пределах территории Причерноморско-Крымской нефтегазоносной области. Анализ полученных результатов показал значимость рассчитанных величин аномалий гравитационного поля, что свидетельствует о возможности применения методов интегрального сейсмогравитационного моделирования для детального изучения геологического строения и прогнозирования участков развития пород с улучшенными коллекторскими свойствами в условиях северо-западной части шельфа Черного моря.

Ключевые слова: северо-западный шельф Черного моря, месторождения Причерноморско-Крымской нефтегазоносной области, гравиразведка, гравитационный эффект, сейсмогравитационное моделирование.

Publication deals with the question of calculation of gravity effects, caused by hydrocarbon fields within Black Sea-Crimean oil-and-gas-bearing area. Main stages of gravity modeling are illustrated for Golitsino gascondensate field. Gravity effects diagrams are made for differently saturated pools. For the values got statistical analysis is made and the scheme of spatial distribution of gravity effects on the territory of Black Sea-Crimean region is plotted. Results analysis shows significance of calculated gravity effects. This fact evidences the possibility of usage of joint seismic and gravity inversion methods for subsurface studying and reservoirs prospecting particularly on the north-western part of the Black Sea Shalf. fields of the Plack Sea Crimean oil and gas bearing

Keywords: North-Western Part of the Black Sea Shelf, fields of the Black Sea-Crimean oil-and-gas-bearing area, gravimetry, gravity effect, joint seismic and gravity modeling

Дослідження глибинної будови надр південного нафтогазоносного регіону України є одним із стратегічних завдань України на шляху нарощення розвіданих запасів нафти і газу та забезпечення власної енергетичної безпеки. За даними фахівців [0] третина нерозвіданих ресурсів газу і четверта частина нерозвіданих ресурсів нафти припадають на акваторії Чорного і Азовського морів. Значні перспективи вуглеводневих покладів пов'язують із північнозахідною частиною шельфу Чорного моря, в межах якого відкрито 8 газових та газоконденсатних родовищ: Одеське, Голіцинське, Південно-Голіцинське, Шмідтівське, Штормове, Архангельське, Кримське та Безіменне. Названі родовища розташовані в акваторіальній частині Каркінітсько-Північно-Кримського прогину.

Зважаючи на високу вартість проведення геологорозвідувальних робіт, актуальним залишається завдання ефективного вилучення корисної інформації з результатів геофізичних досліджень, в тому числі гравітаційних даних. При цьому важливого значення набуває питання відображення нафтогазоперспективних об'єктів в гравітаційному полі, чому і присвячена дана стаття.

У результаті виконаних досліджень проведено розрахунок прямих гравітаційних ефектів для різних типів вуглеводневих родовищ Причорноморсько-Кримської нафтогазоносної області.

Методика розрахунків базується на припущенні, що поровий простір гірської породиколектора може бути заповнений пластовою водою або вуглеводневим флюїдом. Дефіцит густини, що виникає в межах нафто- і газонасичених пластів, за рахунок різниці густини покладів, яка пов'язана з їх насиченням, обумовлює наявність в аномальному гравітаційному полі локальних мінімумів сили тяжіння [0].

Процес визначення аномального гравітаційного ефекту складався з таких етапів:

1 Створення цифрових моделей геометрії геологічних границь та геогустинних параметрів геологічної моделі родовища.

2 Формування геогустинної моделі родовища у вигляді неоднорідного розподілу геогустинних властивостей з урахуванням особливостей поведінки в різних тектонічних зонах та в припущенні, що поровий простір порід-колекторів заповнений пластовою водою $\sigma^{B}(x,z)$, де $(x,z) \in V$ – точка в прямокутній області визначення значень густини в нижньому напівпросторі *хоz*.

3 Розрахунок гравітаційного поля $\Delta g^{B}(x_{0})$, яке створює модель з водонасиченими

породами-колекторами $\Delta g^B(x_0) = A\sigma^B(x,z)$, де A – лінійний інтегральний оператор розв'язку прямої задачі гравірозвідки [0], $x_0 \in E$ – точка на лінії спостереження z = 0.

4 Формування геогустинної моделі родовища у вигляді неоднорідного розподілу геогустинних властивостей з врахуванням особливостей поведінки в різних тектонічних зонах та в припущенні, що поровий простір порідколекторів заповнений відповідним вуглеводневим флюїдом $\sigma^F(x,z)$.

5 Розрахунок гравітаційного поля Δg^{F} , яке створює модель з нафтогазонасиченими породами-колекторами $\Delta g^{F}(x_{0}) = A \sigma^{F}(x, z)$.

6 Визначення різниці між розрахованими гравітаційними полями для випадку водонаси-

чених Δg^B та вуглеводневонасичених Δg^F колекторів $\Delta g^A = \Delta g^B - \Delta g^F$ та розрахунок середньоквадратичного відхилення

$$\Delta g^{A}(x_{0}) = \frac{\sqrt{\sum \left(\Delta g^{B}(x_{0}) - \Delta g^{F}(x_{0})\right)^{2}}}{N} \quad \text{ha den-}$$

ній поверхні, де *N* – кількість точок, в яких розраховані значення гравітаційних полів.

Величину значення середньоквадратичного відхилення будемо приймати за оцінку ступеня поверхневої "гравітаційної контрастності" відповідного нафтового, газового або газоконденсатного родовища і називатимемо параметром гравітаційної контрастності. Необхідно підкреслити: це оцінювання проводиться для всього розрізу, який розглядається як єдиний геологотектонічний та промисловий об'єкт [4].

Для розрахунку гравітаційного ефекту, який створюють складнопобудовані структурні геолого-геофізичні моделі, використовувалася підсистема розв'язку прямої лінійної задачі гравірозвідки, яка реалізована в автоматизованій системі кількісної комплексної інтерпретації GCIS [5] (НТФ «БІПЕКС лтд.»).

Як первинні дані про геологічну будову, характер розподілу порід-колекторів і їх петрофізичних властивостей на відомих нафтогазових родовищах північно-західного шельфу Чорного моря використано матеріали атласу родовищ нафти і газу України [6] та результати петрофізичних досліджень, виконані різними авторами [7-9].

Для забезпечення максимального охоплення різноманітних типів родовищ та глибинних геологічних умов проведено формування цифрових моделей та розрахунок аномальної складової гравітаційного поля за профілями, які перетинають 21 родовище, що розташовані в межах Причорноморсько-Кримської нафтогазоносної області, з яких: 10 газових, 2 нафтових, 9 газоконденсатних (рис. 1).

Для ілюстрування всіх етапів процесу обчислення величини гравітаційної контрасності розглянемо результати гравітаційного моделювання для геологічного розрізу Голіцинського газоконденсатного родовища (рис. 2-3).

Геологічний розріз Голіцинського газоконденсатного родовища представлений теригенними та карбонатними відкладами крейди, палеогену та неогену, що неузгоджено залягають на породах докрейдового фундаменту (табл. 1). Промислові поклади приурочені до карбонатних утворень нижнього палеоцену Р₁та піщаноалевритистих товщ майкопської серії Р₃mk₂.

Для розрахунку густини водонасичених порід-колекторів була використана відома петрофізична модель:

$$y_n = y_{c\kappa}(1 - K_n) + K_n y_{\kappa},$$
 (1)

де: $\sigma_{c\kappa}$ – густина скелету породи, K_n – коефіцієнт пористості, прийнятий за даними петрофізичних досліджень; σ_e – густина пластової води. Відповідно для вуглеводневонасичених порід використано більш складну залежність:

Рисунок 1 – Схема розташування нафтових, газових та газоконденсатних родовищ Причорноморсько-Кримської нафтогазоносної області

Рисунок 2 – Структурна схема покрівлі продуктивного горизонту П-ХІ (нижній палеоцен) (за О.Я.Дергачовою, 1987 р. з доповненнями С.М.Захарчука, 1994 р.)

$$\sigma_n = \sigma_{c\kappa}(1 - K_n) + K_n(\sigma_{\phi}K_{\scriptscriptstyle H2} + \sigma_{e}(1 - K_{\scriptscriptstyle H2})), (2)$$

де: σ_{ϕ} – густина відповідного вуглеводневого

флюїду, *K_{нг}* – коефіцієнт нафтогазонасичення, в частках одиниці.

Важливим елементом застосування співвідношення (2) є врахування залежності густини вуглеводневих флюїдів від пластових умов – тиску і температури (рис. 4).

У результаті розрахунку прямої лінійної задачі гравірозвідки для випадку водонасиченої та газонасиченої складових порового простору отримані гравітаційні поля (рис. 5), які відображають особливості структурно-тектонічної будови, та аномальна крива (рис. 6) з максимальною амплітудою -0.345 мГл та величиною середньоквадратичного відхилення 0.210 мГл. Подібні розрахунки були виконані для всіх родовищ (табл. 2)

З метою аналізу характеру поведінки величини гравітаційної контрастності в залежності від типу родовища (нафтове, газове, газоконденсатне) для кожного з типів були побудовані діаграми розподілу параметру з ранжуванням за амплітудою (рис.7-9).

Як видно з побудованих діаграм, газові і газоконденсатні родовища характеризуються значними величинами гравітаційної контрастності – до -0.360 мГл. Причому як для газових, так і газоконденсатних родовищ, розташованих в акваторіальній частині, амплітуди дещо більші, ніж для суходолу.

Для нафтових родовищ величина гравітаційного ефекту є меншою і складає -0.005 мГл, що обумовлено незначними розмірами їх продуктивних частин.

Рисунок 3 – Геогустинна модель розрізу Голіцинського газоконденсатного родовища

Таблиця 1 – Геолого-геофізична характеристика геологічного) розрізу				
Голіцинського газоконденсатного родовища					

N⁰	Вік	Літологічний склад	Густина порід		Порис-	Характер	Густина водонаси-	Густина газонаси-
3/П			мін.	макс.	тість	флюїду	ченого	ченого
							покладу	покладу
1	N_2	вапняки, глини, пісковики	1.80	2.0				
2	N_1	глини, алевроліти,						
3	P ₃ mk ₂	алеврити,	1.80	2.20	до 38%	газ	1.702	1.546
4	P_3mk_1	пісковики						
5	P_{2}^{3}	глини, вапняки,	2.00	2.40				
6	P_1^{-1}	мергелі, пісковики	2.10	2.50	до 24%	газоконденсат	2.013	1.922
7	K ₂ m	вапняки, мергелі,						
8	K ₂ km	вулканогенні						
9	K ₂ st	утворення сеноману	2.20	2.55				
10	K ₂ t-k							
11	K ₂ s							
12	PR	пісковики, алевро- літи, аргіліти, сильнометаморфі- зовані сланці	2.60	2.75				

Рисунок 4 – Залежність густини порід-колекторів майкопських відкладів Причорноморсько-Кримської нафтогазоносної області від пластового тиску та температури

N⁰	Назва родовища	Тип родовища	Аномалія (мГл)
1	Оленівське	газоконденсатне	0.257
2	Глібівське	газоконденсатне	0.215
3	Голіцинське	газоконденсатне	0.210
4	Штормове	газоконденсатне	0.157
5	Краснополянське	газоконденсатне	0.019
6	Західно-Октябрьське	газоконденсатне	0.008
7	Карлавське	газоконденсатне	0.007
8	Чорноморське	газоконденсатне	0.002
9	Тетянівське	газоконденсатне	0.001
10	Джанкойське	газове	0.316
11	Кримське	газове	0.193
12	Шмідтівське	газове	0.190
13	Архангельське	газове	0.178
14	Південно-Голіцинське	газове	0.171
15	Одеське	газове	0.165
16	Задорненське	газове	0.158
17	Приазовське	газове	0.061
18	Ярилгацьке	газове	0.052
19	Кіровське	газове	0.007
20	Октябрьське	нафтове	0.005
21	Серебрянське	нафтове	0.002

Таблиця 2 – Результати розрахунк	у величин гравітаційн	юї контрастності в	ідомих
нафтогазових родовищ Причорн	оморсько-Кримської н	іафтогазоносної об	ласті

З метою зведення всіх даних в межах Причорноморсько-Кримської нафтогазоносної області для кожного з типів проведено статистичний аналіз отриманих величин гравітаційної контрастності (рис. 10).

Аналіз отриманих даних засвідчив, що над газо- і газоконденсатними родовищами існують значимі за величиною від'ємні аномалії гравітаційного поля, і у випадку, якщо би вдалося побудувати формальний процес виділенння таких аномалій, за їх величиною можна було би прогнозувати попередній характер вуглеводневого насичення геологічного розрізу. Однак, жодні формальні методи розділення гравітаційного поля на складові не в змозі виділити такі аномалії, а існування цих аномалій є суттєвим аргументом на користь застосування методів інтегрального геолого-геофізичного сейсмогравітаційного моделювання для детального вивчення геологічної будови та прогнозування ділянок розвитку порід з покращеними колекторськими властивостями, в т. ч. і нафтогазонасичених.

Крім вже вказаних позитивних результатів за отриманими теоретичними величинами гравітаційної контрастності на базі просторового положення вже відкритих нафтогазових родовищ можна спрогнозувати просторову поведін-

□ Газоконденсатні родовища акваторії ≡ Газоконденсатні родовища суходолу

Рисунок 8 – Величина параметра гравітаційної контрастності для газоконденсатних родовищ

Рисунок 9 – Величина параметра гравітаційної контрастності для газових родовищ

ку параметра гравітаційної контрастності та, як наслідок, характер насичення геологічного розрізу території Причорноморсько-Кримської нафтогазоносної області (рис. 11).

Автори висловлюють подяку Причорномор ДРГП за постановку проблеми вивчення північно-західного шельфу Чорного моря та НТФ «БІПЕКС лтд.» за надану можливість проводити геолого-геофізичне моделювання геологічних розрізів.

Література

1 Перспективи нафтогазоносності глибокозанурених горизонтів осадових басейнів України: зб. наукових праць / [ред. Б.Й. Маєвський]. – Івано-Франківськ: Факел, 2005. – 219 с.
2 Слепак З.М. Применение гравиразведки

при поисках нефтеперспективных структур / 3.М. Слепак. – М.: Недра, 1989. – 200 с. – ISBN 5-247-00596-1.

3 Кобрунов А.И. Теоретические основы решения обратных задач геофизики: учеб. пособие / А.И.Кобрунов. – Ухта: УИИ, 1995. – 226 с.

4 Петровский А.П. Информационное обеспечение и модельные представления интегральной интерпретации геолого-геофизических данных при изучении нефтегазоносных структур / Александр Петровский // Геофиз. журн. – 2004. – №3. – С.77-86. 5 Петровский А.П. Автоматизированная

система GSIC-количественной комплексной интерпретации данных сейсмогравиметрии для персональных компьютеров / А.П. Петровский, Кобрунов А.И., Суятинов В.Н. // Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей: Международный семинар им.Д.Г.Успенского, Москва, 31 января - 4 февраля 2000 г. : материалы 27-й сессии. – Москва, 2000. – C.133-135.

6 Атлас родовищ нафти і газу України / [редкол.: Федишин В.О. (голова) та ін.]. – Львів: Центр Європи, 1998. – Т.6: Південний нафтогазоносний регіон. - 1998. - 222 с. - ISBN 966-7022-04-8.

Рисунок 10 – Середні значення величини параметра гравітаційної контрастності для нафтогазових родовищ Причорноморсько-Кримської нафтогазоносної області

Рисунок 11 – Карта розподілу параметра гравітаційної контрастності Причорноморсько-Кримської нафтогазоносної області

7 Геология СССР / [редкол.: Сидоренко А.В. (гл. редактор) и др.]. – М.: Недра, 1969. – Т.8: Крым. – 576 с.

8 Кольцов С.В. Сейсмостратиграфічні критерії вивчення глибинної будови та перспективи нафтогазоносності Північнокримського прогину і прилеглих територій : дис. ... канд. геол. наук : 04.00.22 / Кольцов Сергій Віталійович. – Івано-Франківськ, 2007. – 254 с. 9 Физические свойства горных пород и полезных ископаемых : справочник геофизика / [под ред. Н.Б. Дортман]. – М.: Недра, 1984. – 455 с.

> Стаття поступила в редакційну колегію 25.06.09 Рекомендована до друку професором **Б. Й. Маєвським**

33