ВИМІРЮВАННЯ ФІЗИКО-ХІМІЧНИХ ПАРАМЕТРІВ РЕЧОВИН

УДК 543.275.1.08

СВІТЛОВОДНИЙ АНАЛІЗАТОР ВОЛОГОСТІ ГАЗУ

Й. Й. Білинський, К. Ю. Іоніна, Б. П. Книш

Вінницький національний технічний університет, вул. Хмельницьке шосе, 95, м. Вінниця, 21010, тел.: (0432)59-80-13, e-mail: <u>skorpio-26-85@ukr.net</u>

Проаналізовано проходження променів в плоскому світловоді. Запропоновано структурну схему аналізатора вологості газу на основі плоского світловода.

Ключові слова: аналізатор, вологість, плоский світловод, конденсат, температура точки роси, межа світлотіні, граничний кут, показник заломлення.

Проанализировано прохождение лучей в плоском световоде. Предложена структурная схема анализатора влажности газа на основе плоского световода.

Ключевые слова: анализатор, влажность, плоский световод, конденсат, температура точки росы, граница светотени, граничный угол, показатель преломления.

Beams passing in flat fiber is analyzed. The block diagram of gas humidity analyser on the basis of flat fiber is proposed.

The keywords: analyzer, humidity, flat fiber, condensate, dew point temperature, chiaroscuro edge, critical angle, refractive index.

Вологість газів – це параметр, що відіграє істотну роль при забезпеченні якості та характеристик високотехнологічних технічних і промислових процесів. Можна виділити чотири основних типи аналізаторів вологості: аналізатори. що вимірюють температуру конденсації пари води на охолоджуваному дзеркалі; аналізатори 3 електролітичною коміркою на основі п'ятиокису фосфору; що аналізатори, використовують ємнісні сенсори Al_2O_3 або $Si_2;$ аналізатори, що реалізують принцип мікроваг на основі п'єзокристалу зi спеціальним покриттям. Найбільш широкого застосування набули конденсаційні гігрометри точки роси [1-3]. Але жоден із вказаних типів вимірювання вологості газів не забезпечує надійне та стабільне вимірювання вологості. Це пов'язано з низькою чутливістю методу, залежністю показів від фіксації температури початку конденсації вологи, оскільки для утворення видимої плівки конденсату на дзеркалі може знадобитися від декількох хвилин до декількох годин, а також роду наявності різного i3-3a домішок B аналізованому газі, які ускладнюють визначення вологості. Складності також зумовлені недостатньо високою чутливістю вимірювального тракту до взаємного розташування температур конденсації вологи та

інших складових газу, наприклад, вуглеводнів, азоту тощо.

Метою роботи є розробка конденсаційного гігрометра точки роси, який забезпечуватиме підвищення точності та швидкодії вимірювання вологості.

В роботі запропоновано конденсаційний гігрометр вологості газів на основі світловодної структури з фіксацією положення світлотіні багатоелементним фотоприймачем. Відомо, що домішки газів мають різні показники заломлення (вода – 1,333; азот – 1,197; водень – 1,12; кисень – 1,221; етан – 1,37; декан – 1,4119; бутан – 1,3326; гелій – 1,028) [1-4]. Тому в момент випадання конденсату на поверхню дзеркала необхідно контролювати показник заломлення речовини, що дозволить визначити, яка речовина сконденсувалася. Таким чином, фіксація моменту, який відповідає критичному куту заломлення конденсату, наприклад, води, дозволить реєструвати температуру точки роси, дасть змогу підвищити точність шо вимірювання вологості газу. При цьому використання світловодної структури 3 багаторазовим відбиттям дозволить підвищити швидкодію [1, 2].

Для розробки світловодного аналізатора вологості газу проаналізуємо поширення випромінювання по плоскому світловоду [1-5]. Розглянемо ідеальну оптичну систему з плоским світловодом як чутливим елементом, в якій поширюється гомоцентричний пучок. Товщина світловода d набагато більша довжини хвилі випромінювання. Довжина світловода чи його частина L залежить від кількості відбиттів при поширені по ньому світла, а також від розмірів пристроїв вводу-виводу, найменша довжина світловода відповідає одноразовому відбиттю.

Зробимо припущення, що світловод та вимірюване середовище однорідні, оптично ізотропні та характеризуються показниками заломлення n_0 і n_1 . Причому $n_0 > n_1$. При одноразовому відбитті світловод має форму півциліндра з радіусом *R*. Нехай вузький гомоцентричний пучок 3 рівномірним розподілом інтенсивності випромінювання в плоскому куті його поширення, потрапляючи в світловоді на межу розділу двох середовищ, відбивається і проектується на екран, як це показано на рис. 1. Екран розміщений таким чином, що нормаль ОА до його поверхні в точці А відбиття утворює з перпендикуляром до площини розділу світловод-газ кут ф, величина якого відповідає критичному куту і визначає верхнє значення діапазону показника заломлення n₁.

Рисунок 1 – Поширення гомоцентричного пучка при одноразовому відбитті

Всі промені з кутами менше критичного для значення n_1 заломлюються даного в досліджуване середовище і на екрані утворюється темна область, а промені з кутами більше критичного після відбиття проектуються на екран і утворюють світлу область. Таким чином утворюється межа світлотіні. Величина кута від нормалі до поверхні розділу світловодгаз до межі світлотіні відповідає критичному куту $\Theta_{\kappa p}$ для конкретного значення n_1 . При постійному значенні показника заломлення n₀ і змінному n₁ положення межі світлотіні буде змінюватись, оскільки змінюватиметься значення $\Theta_{\nu n}$.

$$n_1 = n_0 \sin \Theta_{\kappa p}, \qquad (1)$$

де
$$\Theta_{\kappa p} = \phi + \beta$$
.

Кут β визначається з ΔOAB :

$$B = \operatorname{arctg} \frac{X}{R+S},$$
 (2)

де X – відстань від межі світлотіні до нормалі *AO*.

Відповідно

$$\Theta_{\kappa p} = \phi + \operatorname{arctg} \frac{X}{R+S}.$$
 (3)

Використовуючи (1), запишемо, що

$$n_1 = n_0 \sin\left(\varphi + \arctan\frac{X}{R+S}\right),\tag{4}$$

де

$$X = \mathbf{R} + S \underbrace{\frac{1 - \sqrt{\mathbf{Q}_0/n_1} - 1 \cdot \mathrm{tg}\,\phi}{\sqrt{\mathbf{Q}_0/n_1} - 1 \cdot \mathrm{tg}\,\phi}}_{\sqrt{\mathbf{Q}_0/n_1} - 1 \cdot \mathrm{tg}\,\phi}.$$
 (5)

Таким чином, якщо для світловода з відомим показником заломлення і значенням кута Ф точно виміряти положення межі світлотіні, тобто X, то за допомогою виразу (4) можна розрахувати показник заломлення середовища n_1 , тобто визначити, яка речовина сконденсувалась на чутливій ділянці поверхні світловоду, після чого перейти до визначення вологості газу, якщо підтверджено, шо сконденсувалась саме водяна пара.

На рис. 2 наведені криві, які характеризують положення межі світлотіні при різних значеннях світловода, показника заломлення ле $n_0(1)=1,4891;$ $n_0(2)=1,5617;$ $n_0(3)=1,6350;$ 3 $n_0(4)=1,7237;$ $n_0(5)=1,8138.$ графічного представлення даної залежності видно, що верхнє значення діапазону зміни зовнішнього середовища однозначно визначається показником заломлення світловода n_0 , а найбільша крутизна $\partial X/\partial n_I$, тобто найбільша чутливість, для даного n_I спостерігається при $n_I \rightarrow n_0$. Чутливість аналізатора також зростає при використанні багаторазового відбиття.

Функція перетворення аналізатора має такий вигляд:

$$I_{\phi n}^{N} = \frac{\partial P_{\partial \mathcal{H}}}{\partial \varphi} \, \mathbf{I}_{\phi n} \, \mathbf{I}_{\phi n} \, \mathbf{I}_{\phi n} \, \mathbf{K}_{n}, \quad (6)$$

де $\frac{\partial P_{\partial \infty}}{\partial \phi} \left(\sum_{\alpha, \infty} \right)^{-}$ потужність оптичного випромінювання в одиничному куті, яка

створюється джерелом випромінювання при протіканні по ньому струму $I_{\partial \infty}$; $f_{\phi n}$ – функція перетворення фотоприймача; $S_{\phi n}$ – інтегральна чутливість фотоприймача; K_n – коефіцієнт втрат потужності оптичного випромінювання при n = 0; φ – кут відбиття; R(n) – коефіцієнт відбиття; N – номер комірки фотоприймача.

Рисунок 2 – Залежність положення межі світлотіні від показника заломлення середовища

На основі запропонованого підходу розроблено структурну схему світловодного аналізатора вологості газу (рис. 3), що містить джерело світла 1, систему фокусування 2, світловод 3, виконаний у вигляді тонкої скляної пластинки з чутливою ділянкою та пристроями вводу-виводу променів у вигляді двох півсфер з різними діаметрами, фотодетектор 4, виконаний у вигляді фотолінійки з кількох фотодіодів.

На бічній стінці світловода 3 розташовані три термоелектрично регульовані охолоджувачі 6₁, 6₂, 6₃ та три вимірювачі температури 5₁, 5₂, 5₃. Виходи вимірювачів температури 5₁, 5₂, 5₃

електрично зв'язані 3 входами блоку регулювання та обчислення 9, а виходи блоку регулювання та обчислення 9 з'єднані з регульованими термоелектрично 6₁, 6₂, 6₃. Вихід блоку охолоджувачами регулювання та обчислення 9 електрично зв'язаний з входом джерела світла 1. Система фокусування 2 розташована між джерелом світла 1 та світловодом 3, виходи аналого-цифрового перетворювача 8 з'єднані з входом блоку керування фотодетектором 7 та входом блоку регулювання та обчислення 9.

Вихід блоку керування фотодетектором 7 з'єднаний з входом фотодетектора 4, вихід якого з'єднаний входом аналого-цифрового 3 перетворювача 8. Попередньо сфокусовані системою фокусування 2 промені світла від джерела світла 1 згідно команди блоку регулювання та обчислення 9 через півсферу світловода вводяться В світловод 3. охолоджений термоелектрично регульованими охолоджувачами 61, 62, 63, де зазнають повного внутрішнього відбиття. Блок регулювання та обчислення 9 видає сигнал на термоелектрично регульовані охолоджувачі 6₁, 6₂, 6₃ на температури пониження команду та вимірювачам температури 51, 52, 53 зафіксувати температуру.

Якщо покази вимірювачів температури 5₁, 52, 53 відрізняються, то блок регулювання та обчислення 9 видає сигнал на термоелектрично регульовані охолоджувачі 61, 62, 63 для врівноваження температури до однакового значення та команду вимірювачам температури зафіксувати 52, 53 температуру. 5₁, Термоелектрично регульовані охолоджувачі 6₁, 62, 63 повинні охолоджувати до однакового значення температури. При охолодженні на чутливій ділянці світловода 3, яка знаходиться у контакті з аналізованим газом, починає випадати конденсат, за рахунок чого знижується

Рисунок 3 – Структурна схема світловодного аналізатора вологості газу

інтенсивність відбитих променів світла. При досягненні точки роси на фотодетектор 4 потрапляє світлове поле, в зоні якого утворюється межа світлотіні. Для зчитування та оцифрування даних використовується аналогоцифровий перетворювач 8, який задає тактові блоку керування імпульси для 7 7 4. фотодетектором Блок керування фотодетектором 4 опитує кожен фотодіод, після чого сигнал, пройшовши оцифрування в аналого-цифровому перетворювачі 8, надходить на блок регулювання та обчислення 9. Утворення межі світлотіні фіксується блоком регулювання та обчислення 9, що видає команду вимірювачам температури 51, 52, 53 зафіксувати температуру після того, як було оброблено і підтверджено команду про рівність температур термоелектрично регульованих охолоджувачів 6₁, 6₂, 6₃ та по положенню світлотіні виявлено, що сконденсувалась саме вода. Вологість газу розрахунковим шляхом визначається по температурі точки роси, що проводиться блоком регулювання та обчислення 9.

Для перевірки запропонованого підходу проведено дослідження 3 використанням макету, зовнішній вигляд чутливого елемента якого зображено на рис. 4. Макет аналізатора вологості складається з джерела світла 1, яке виконане на основі світлодіода АЛ 107А, фотоприймача 2 фотодіода ФД 256. _ конденсаційної поверхні (дзеркала) 3 кремнієвої пластини, сенсора температури 4 типу Pt 1000 фірми JUMO, модуля Пельтьє 5 – MT1-1.3- 127 ĜŜ.

Рисунок 4 – Структура експериментального макета

В ході експерименту використана класична схема на основі світловода з внутрішнім багаторазовим відбиттям (кількість відбиттів дорівнює 5). При цьому джерело випромінювання розташовувалось в межах розрахованого для даної світловодної структури критичного кута. Відповідно, й фотоприймальна система, що складалася з двох фотоприймачів, увімкнених за диференціальною схемою також налаштовувалася в межах критичного кута. Реєстрація температури точки роси відбувалася в момент формування межі світлотіні між фотоприймачами при повному балансі диференціальної схеми.

Для порівняння результатів вимірювання точки роси за двома схемами використовувався цифровий термометр-гігрометр RST – 01583 з похибкою вимірювання 1%. Відносна вологість визначалась на основі виміряної температури точки роси за допомогою Free Professional Calculator. результаті Humidity В було встановлено, використанні що при запропонованої схеми гігрометра похибка вимірювання в 1,5 рази менша у порівнянні з класичною схемою. При цьому час вимірювання становив близько 20 с при використанні класичної схеми і близько 6 с для схеми з внутрішнім багаторазовим відбиттям.

ВИСНОВКИ

Проаналізовано проходження променів в плоскому світловоді. Запропоновано структурну схему світловодного аналізатора вологості газу на основі плоского світловода. На підставі експериментальних досліджень встановлено, що запропонована схема аналізатора вологості схема на основі багаторазового відбиття дозволяє підвищити точність вимірювань і збільшити швидкодію.

1. Берлинер М. А. Измерения влажности. / М. А. Берлинер – М. : Энергия, 1973, – 400 с. 2. Мухитдинов М. Оптические методы и устройства контроля влажности М. Мухитдинов, Э. С. Мусаев– М. Энергоатомиздат, 1986. – 96 с. 3. Кучикян Л. М. Световоды / Л. М. Кучикян – М. : Энергия, 1973. – 60 с. 4. Вейнберг В. Б. Оптика световодов. Изд. 2-е, перераб. и доп. / В. Б. Вейнберг, Д.К. Саттаров. -Л., Машиностроение (Ленингр. отд-ние), 1977. — 320 с. 5. Пат. 26496А Україна G01N 19/00. Конденсаційний гігрометр / Білинський Й.Й., Онушко В.В., Долецький В.А.; заявник і патентовласник – національний Віннииький технічний університет — № 200705201, заявл. 11.05.2007; опубл. 25.09.2007, Бюл. №15.

Поступила в редакцію 30.09.2011 р.

Рекомендував до друку докт. техн. наук, проф. Кичак В. М.