ВИДОБУВАННЯ НАФТИ І ГАЗУ

© В.П. Нагорний д-р техн. наук І.І. Денисюк канд. техн. наук ІГФНАН України Т.А. Швейкіна УкрНДІгаз

Розподіл енергії імпульсної дії у привибійній зоні пласта за частотами

УДК 532.595

Iз використанням теорії спектрів розроблено аналітичні залежності, що допомагають проводити розрахунки частотного розподілу енергії імпульсного навантаження на масив у привибійній зоні пласта.

Ключові слова: енергія, імпульс, пласт, спектр, частота.

С использованием теории спектров разработаны аналитические зависимости, позволяющие производить расчеты частотного распределения энергии импульсного нагружения на массив в призабойной зоне пласта. Ключевые слова: энергия, импульс, пласт, спектр, частота.

The analytical relations are developed using the theory of spectra, which allows us to calculate the frequency distribution of impulse load energy in bottomhole zone.

Key words: energy, impulse, layer, spectrum, frequency.

Під час проведення імпульсної обробки масиву у привибійній зоні пласта з метою створення штучної тріщинуватості та поліпшення фільтраційних властивостей порід-колекторів важливе значення має режим навантаження, а саме розподіл енергії навантаження по діапазонах частот. Для розширення області імпульсного оброблення масиву необхідно формувати такі навантаження, щоб основна частина енергії була зосереджена в низькому діапазоні частот, тому що такі частоти зі збільшенням відстані від джерела збурення згасають меншою мірою порівняно з високими частотами [1].

Для вибору найбільш оптимального режиму імпульсного навантаження на масив дослідимо розподіл енергії по різних діапазонах частот у процесі розповсюдження імпульсного збурення по гірському масиву.

Нехай імпульсна дія, що генерується в процесі підривання вибухової речовини, описується функцією:

$$\sigma(t) = \sigma_m f(t). \tag{1}$$

Згідно з роботою [2], спектральна щільність вибухової дії (1) визначається за формулою:

$$S(\omega) = |S(j\omega)|,$$

де $S(j\omega) = \sigma_m \int_{0}^{\infty} f(t) \exp(-j\omega t) dt; \quad j = \sqrt{-1} -$ уявна одиниця.

Енергію вибухової дії, що описується залежністю (1), представимо у вигляді [2]:

$$W(\omega) = \pi^{-1} \int_{0}^{\infty} S^{2}(\omega) d\omega.$$
 (2)

Доля енергії вибухової дії n, що припадає на певний інтервал частот ω_1 ... ω_2 , визначається як відношення визначених інтегралів:

$$n = \int_{\omega_1}^{\omega_2} S^2(\omega) d\omega / \int_0^\infty S^2(\omega) d\omega$$

Розподіл енергії імпульсної дії по різних діапазонах частот розглянемо на прикладі, коли дія задається згідно з виразом

$$\sigma(t) = \sigma_m \exp(-t/\theta), \tag{3}$$

де θ – параметр часу, який залежить від фізико-механічних властивостей гірської породи, с.

Із урахуванням виразу (3) знайдемо спектральну щільність:

$$S(j\omega) = \sigma_m \int_0^\infty \exp(-t/\theta) \exp(-j\omega t) dt = \sigma_m \int_0^\infty \exp(-(1/\theta + j\omega) t) dt =$$
$$= \sigma_m \frac{\exp(-(1/\theta + j\omega) t)}{-(1/\theta + j\omega)} \bigg|_0^\infty = \frac{\sigma_m}{1/\theta + j\omega};$$
$$S(\omega) = S[(j\omega)] = \frac{\sigma_m}{(1/\theta^2 + \omega^2)^{1/2}}.$$

Відповідно до виразу (2) енергію імпульсної дії (3) представимо у вигляді:

$$W(\omega) = \frac{1}{\pi} \int_{0}^{\infty} \frac{\sigma_m^2}{1/\theta^2 + \omega^2} d\omega.$$

Долю енергії, що припадає на певний діапазон частот, визначають із виразу:

$$n = \int_{\omega_1}^{\omega_2} \frac{d\omega}{1/\theta^2 + \omega^2} / \int_0^{\infty} \frac{d\omega}{1/\theta^2 + \omega^2} = \frac{2}{\pi} \left(\operatorname{arctg} \theta \omega_2 - \operatorname{arctg} \theta \omega_1 \right).$$
(4)

Параметр часу θ у міру розповсюдження імпульсної дії від джерела вибуху визначають із залежності [3]:

$$\theta = B\left(\frac{r}{r_{3}}\right)^{\mu} \rho c, \ \mathbf{c},$$

де *р* – щільність гірської породи; *с* – швидкість розповсю-

дження повздовжніх хвиль; *В*, µ – параметри, що залежать від типу гірської породи.

Для прикладу: для вапняку (ρ =2 390 кг/м³; *c*=3 880 м/с) значення параметра θ на різних відстанях від джерела вибуху приведено в табл. 1.

Таблиця 1

Значення θ на різних відстанях від джерела вибуху

<i>r/r</i> ₃	1	10	20 30		40	50
θ, c	0,62 [.] 10 ⁻³	0,88 [.] 10 ⁻³	4,4·10 ⁻³	7,04·10 ⁻³	10,6 [.] 10 ⁻³	13,64·10 ⁻³

де r/r_3 – відносна відстань від джерела вибуху; r_3 – радіус заряду.

Результати розрахунків частотного розподілу долі *n* енергії вибухового навантаження на різних відстанях від джерела вибуху за формулою (4) із урахуванням даних табл. 1 зведено в табл. 2.

Таблиця 2

Частотний розподіл долі *n* енергії вибухового навантаження на різних відстанях від джерела вибуху

Відносна відстань <i>r/r</i> 3	Доля <i>п</i> енергії в діапазоні частот, Гц					
від джерела навантажень	0–50	50-100	100-150	150-300	300-500	
1	0,120	0,114	0,100	0,210	0,150	
10	0,170	0,150	0,120	0,210	0,120	
20	0,600	0,180	0,070	0,074	0,030	
40	0,813	0,091	0,031	0,032	0,013	
50	0,850	0,070	0,025	0,025	0,010	

За даними табл. 2 побудовано графіки розподілу долі n енергії імпульсної дії залежно від частоти f (рис. 1) і параметра часу θ (рис. 2).

Графіки рис. 2 показують, що для кожного із діапазонів частот існує оптимальне значення параметра θ_{om} , при якому *n* досягає максимального значення, тобто вихід енергії вибухової дії максимальний. Визначимо його аналітично. Для цього знаходимо похідну виразу (4) за параметром θ і прирівнюємо її до нуля:

$$\frac{\omega_2}{1 + (\theta \omega_2)^2} - \frac{\omega_1}{1 + (\theta \omega_1)^2} = 0.$$
 (5)

Із співвідношення (5) знаходимо

$$\theta_{\rm orr} = \frac{1}{(\omega_1 \omega_2)^{1/2}} = \frac{1}{2\pi (f_1 f_2)^{-1/2}}.$$
 (6)

Із виразу (6) знаходимо значення θ_{ont} для різних діапазонів частот (табл. 3).

Таблиця 3

Значення $\theta_{\mbox{\scriptsize ont}}$ для різних діапазонів частот

f_1f_2 , Гц	120	2050	50100	100150
θ _{опт} , с	3,56·10 ⁻³	5,03·10 ⁻³	2,25·10 ⁻³	1,3·10 ⁻³

Отже, тривалість вибухового навантаження, що характеризується параметром θ , суттєво впливає на частотний розподіл енергії вибухової дії на гірський масив (див. рис. 2). Цей параметр змінюється залежно від відстані до джерела вибуху. На малих відстанях від джерела вибуху (1...10) r_3 у спектрі присутні більш високі частоти (до 500 Гц). На більших відстанях (40...50) r_3 основна енергія вибуху зосереджена на частотах у діапазоні (0...50) Гц (див. рис. 1).

Розглянемо більш складний вид вибухового навантаження. У роботі [4] представлено математичну модель вибухового імпульсу, що діє на стінки порожнини і описується функцією вигляду:

$$\sigma(t) = \sigma_m k_1 (\exp(-\alpha t/t_r) - \exp(-m\alpha t/t_r)), \qquad (7)$$

де t_r – час наростання радіальної компоненти імпульсу σ_r до максимального значення σ_m , с; $k_1 = [\exp(-\alpha) - \exp(m\alpha)]^{-1}$; $\alpha = \ln m(m-1)^{-1}$, m > 1; m – параметр, що регулює тривалість імпульсу.

Використавши приведений вище алгоритм розрахунку, одержимо залежність для визначення долі *n* енергії під час вибухового навантаження вигляду (7):

$$n = \frac{2}{\pi} \frac{m}{m-1} \left[\left(\arctan \frac{\omega_2 t_r}{\alpha} - \arctan \frac{\omega_1 t_r}{\alpha} \right) - \frac{1}{m} \left(\arctan \frac{\omega_2 t_r}{m\alpha} - \arctan \frac{\omega_1 t_r}{m\alpha} \right) \right]. (8)$$

У роботі [5] приведено залежність для визначення параметра *t*_r для різних гірських порід:

$$t_r = aQ^{1/3} + br,$$
 (9)

де *a*, *b* – експериментальні коефіцієнти, що залежать від типу гірської породи; *Q* – маса заряду ВР, кг; *r* – відстань

Рис. 2. Розподіл долі *n* енергії імпульсної дії залежно від параметра часу θ у діапазоні частот: *1* – 1...20 Гц, *2* – 20...50 Гц, *3* – 50...100 Гц, *4* – 100...150 Гц відповідно

Рис. 3. Розподіл долі *п* енергії імпульсної дії залежно від частоти *f* на відстані: 1 – *r* = 100*r*₃; 2 – *r* = 10*r*₃

від джерела навантаження, м.

Залежність (9) із використанням значень коефіцієнтів *а* і *b*, згідно з [5], має вигляд:

для вапняку $t_r = 0.8 \cdot 10^{-5} Q^{1/3} + 0.0973 \cdot 10^{-3} r$; для мармуру $t_r = 1.0 \cdot 10^{-5} Q^{1/3} + 0.5084 \cdot 10^{-3} r$; для граніту $t_r = 0.5 \cdot 10^{-5} Q^{1/3} + 0.0483 \cdot 10^{-3} r$.

Із використанням залежності (8) побудовано табл. 4, де приведено розрахункові дані частотного розподілу nенергії вибухового навантаження вигляду (7) у вапняку на відстанях $10r_3$ і $100r_3$ при m=2 і Q=1,0 кг ($r_3=0,054$ м).

Таблиця 4 Частотний розподіл долі n енергії вибухового навантаження у вапняку на різних відстанях від джерела вибуху

r/r	Доля <i>п</i> енергії у діапазоні частот, Гц							
1/1 ₃ ,	050	50	100	200	400	800	1200	1600
101		100	200	400	800	1200	1600	1800
10	0,033	0,018	0,052	0,101	0,183	0,149	0,115	0,085
100	0.285	0.196	0.270	0.210	0.078	0.012	0.003	0.001

За даними табл. 4 побудовано графіки розподілу долі *n* енергії імпульсної дії залежно від частоти *f* (рис. 3).

Висновок

Одержані аналітичні залежності (4) і (8) дають змогу прогнозувати частотний розподіл енергії вибухової дії, що допомагає активно керувати процесом імпульсного навантаження з метою створення штучної тріщинуватості і поліпшення фільтраційних властивостей порід-колекторів у привибійній зоні пласта.

Список літератури

1. **Друкованый М.Ф.** Действие взрыва в горных породах / М.Ф. Друкованый, В.М. Комир, В.М. Кузнецов. – К.: Наук. думка, 1973. – 184 с.

2. **Харкевич А.А.** Спектры и анализ / А.А. Харкевич. – М.: Физматгиз, 1962. – 236 с.

3. Оксанич И.Ф. Закономерности дробления горных пород взрывом и прогнозирование гранулометрического состава / И.Ф. Оксанич, П.С. Миронов. – М.: Недра, 1982. – 165 с.

4. **Ефремов Э.И.** Основы теории и методы взрывного дробления горных пород / Э.И. Ефремов, В.С. Кравцов, Н.И. Мячина [и др.]. – К.: Наук. думка, 1979. – 224 с.

5. **Михалюк А.В.** Торпедирование и импульсный гидроразрыв пластов / А.В. Михалюк. – К.: Наук. думка, 1986. – 208 с.

Автори статті

Нагорний Володимир Петрович

Доктор технічних наук, професор, завідуючий відділом Інституту геофізики ім. С.І. Субботіна НАН України. Освіта за фахом – механік. Основний напрям наукових досліджень – розробка нафтових та газових родовищ, трубопровідний транспорт, нафтогазосховища.

Денисюк Іван Іванович

Кандидат технічних наук, старший науковий співробітник Інституту геофізики ім. С.І. Субботіна НАН України. Освіта за фахом – механік. Основний напрям наукових досліджень – імпульсні методи підвищення дебіту видобувних свердловин.

Швейкіна Тетяна Адамівна

Науковий співробітник Українського науково-дослідного інституту природних газів. За фахом – хімік. Основний напрям діяльності – хімічна обробка продуктивного пласта.

