Дослідження коефіцієнтів інтенсивності напружень тріщин нормального розриву за імпульсно-хвильових навантажень нафтогазоносних пластів

© В.П. Нагорний д-р техн. наук vgv_nagornyi@ukr.net I.I. Денисюк канд. техн. наук IГФ НАН України У статті визначено коефіцієнти інтенсивності напружень у вершині тріщини нормального розриву за різних режимів її імпульсно-хвильового навантаження. Одержані результати можуть бути використані під час розробки нових методів імпульсно-хвильового оброблення, що базуються на вивільненні внутрішньої енергії структурними елементами середовищ нафтогазоносних пластів.

Ключові слова: імпульс, інтенсивність, коефіцієнт, напруження, пласт, тріщина, частота.

УДК 532.595

В статье определены коэффициенты интенсивности напряжений в вершине трещины нормального разрыва при различных режимах ее импульсно-волнового нагружения. Полученные результаты могут быть использованы при разработке новых методов импульсно-волновой обработки, основанных на высвобождении внутренней энергии структурными элементами сред нефтегазоносных пластов.

Ключевые слова: импульс, интенсивность, коэффициент, напряжение, пласт, трещина, частота.

The article defines stress intensity factors in the top of tensile crack at various regimes of pulseand-wave load. These obtained results can be used to develop new methods for pulse-andwave processing based on the phenomenon of release of the internal energy by the structural elements in the petroleum formations.

Key words: impulse, intensity, factor, stress, formation, crack, frequency.

В ідомо, що за результатами натурних вимірювань для відчутного впливу на нафтові поклади достатньо хвильового поля з амплітудою пружних коливань у межах 10⁻⁸...10⁻⁹ м [1]. Отже, хвильові дії таких амплітуд можуть слугувати спусковим механізмом для вивільнення внутрішньої енергії в пласті, яка виникає під час взаємодії гармонічних хвиль із наявними в пласті тріщинами та їх розкриттям, що супроводжується випромінюванням хвиль високої частоти [2]. Відомо також, що в процесі оброблення нафт хвилями високої частоти знижується їх в'язкість, унаслідок чого збільшується рухливість нафт у каналах фільтрації пласта, що сприяє поліпшенню припливу нафти на вибій свердловини і підвищенню її дебіту [3].

Напружений стан у вершині тріщини описується за допомогою коефіцієнтів інтенсивності напружень [4]. Розглянемо тріщини нормального розриву, напружений стан у вершинах яких характеризується коефіцієнтом інтенсивності *К*₁. Для знаходження коефіцієнтів інтенсивності напружень доводиться розв'язувати задачі для тіл складної конфігурації з тріщинами, а розв'язання задач механіки тіла, що деформується, для областей із розрізами (тріщинами) пов'язане з відомими математичними труднощами через наявність особливих (сингулярних) точок. Більшість цих задач може бути ефективно розв'язано тільки за допомогою застосування електронно-обчислювальних машин. Особливий інтерес представляють задачі з визначення коефіцієнтів інтенсивності напружень за динамічних навантажень на породу нафтогазоносного пласта. Серед великої кількості динамічних навантажень можна виділити два основних типи: ударні та гармонічні.

З метою дослідження коефіцієнтів інтенсивності напружень $K_1(t)$ для тріщин під час дії ударно-хвильових навантажень скористаємося результатами роботи [4], у якій після розв'язання нестаціонарної задачі про дифракцію ударних хвиль на тріщині одержано залежність

$$K_{1}(t) = (1+j) \frac{\sqrt{2\upsilon_{s}(\upsilon_{p}^{2}-\upsilon_{s}^{2})}}{\upsilon_{p}\sqrt{2\pi\upsilon_{p}}} \int_{-\infty}^{\infty} \sqrt{\frac{\upsilon_{s}}{\omega}} \sigma(\omega) e^{-j\omega t} d\omega, \quad (1)$$

де $j = \sqrt{-1}$ – уявна одиниця; υ_p , υ_s – швидкості, відповідно, поздовжньої та поперечної хвиль; $\sigma(\omega)$ – комплексна спектральна функція, яка визначається за виразом

$$\sigma(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \sigma(t) e^{j\omega t} dt , \qquad (2)$$

де $\sigma(t)$ – ударний імпульс, що взаємодіє з тріщиною.

Зауважимо, що формула (1) придатна не тільки для напівнескінченних розрізів (тріщин), але й для кінцевих тріщин, коли $\omega >> \frac{v_p}{l}$, де l-характерна довжина тріщини [4, 5]. Використовуючи залежності (1) і (2), розглянемо деякі випадки імпульсно-хвильової дії на тріщини нормального розриву.

Нехай імпульсна дія описується залежністю

$$\sigma(t) = \begin{cases} 0 & \text{при } t < 0 \text{ i } t > T; \\ \sigma_0 & \text{при } 0 \le t \le T, \end{cases}$$
(3)

де σ_0 і T – амплітуда та час імпульсної дії відповідно.

Комплексна спектральна функція імпульсної дії (3) має вигляд

$$\sigma(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \sigma(t) e^{j\omega t} dt = \frac{1}{\sqrt{2\pi}} \int_{0}^{T} \sigma_{0} e^{j\omega t} dt = \frac{j\sigma_{0}}{\omega\sqrt{2\pi}} \left(1 - e^{j\omega t}\right).$$
(4)

Із урахуванням (4) коефіцієнт інтенсивності напружень під час імпульсної дії (3) визначається за виразом

$$K_1(t) = \frac{(1-j)\sigma_0 \upsilon_s}{2\pi \upsilon_p} \sqrt{\frac{2(\upsilon_p^2 - \upsilon_s^2)}{\upsilon_p}} \int_{-\infty}^{\infty} \frac{e^{-j\omega(t-T)} - e^{-j\omega t}}{\omega\sqrt{\omega}} d\omega.$$
(5)

У виразі (5) необхідно визначити інтеграл

$$I = \int_{-\infty}^{\infty} \frac{e^{-j\omega(t-T)} - e^{-j\omega t}}{\omega\sqrt{\omega}} d\omega = \int_{-\infty}^{\infty} \frac{e^{-j\omega(t-T)}}{\omega\sqrt{\omega}} d\omega - \int_{-\infty}^{\infty} \frac{e^{-j\omega t}}{\omega\sqrt{\omega}} d\omega = I_1 + I_2.$$

Знайдемо спочатку $I_1 = \int_{-\infty}^{\infty} \frac{e^{-j\omega(t-T)} - e^{-j\omega t}}{\omega\sqrt{\omega}} d\omega.$ (6)

За допомогою заміни змінної $\omega = x^2$ інтеграл (6) зводиться до вигляду

$$I_{1} = 2\int_{-\infty}^{\infty} \frac{e^{-j(t-T)x^{2}}}{x^{2}} dx = 2\left(\int_{-\infty}^{\infty} \frac{\cos(t-T)x^{2}}{x^{2}} dx - j\int_{-\infty}^{\infty} \frac{\sin(t-T)x^{2}}{x^{2}} dx\right).$$
 (7)

Інтегруючи (7) за частинами та враховуючи, що

$$\int_{-\infty}^{\infty} \sin(t-T) x^2 dx = \sqrt{\frac{\pi}{2(t-T)}}; \quad \int_{-\infty}^{\infty} \cos(t-T) x^2 dx = \sqrt{\frac{\pi}{2(t-T)}}$$

інтеграли Френеля [6], після нескладних математичних перетворень отримаємо

$$I_1 = 2 \left[-\sqrt{2\pi(t-T)} - j\sqrt{2\pi(t-T)} \right] = -2(1+j)\sqrt{2\pi(t-T)} .$$
 (8)
Аналогічно знаходимо, що

$$I_2 = 2(1+j)\sqrt{2\pi t}$$
. (9)

Отже, із урахуванням виразів (8) і (9) інтеграл *І* має вигляд

 $I = I_1 + I_2 = 2\sqrt{2\pi t} (1+j) - 2\sqrt{2\pi (t-T)} (1+j) = 2\sqrt{2\pi} (1+j) \left[\sqrt{t} - \sqrt{t-T} \right].$ (10)

3 урахуванням виразу (10) коефіцієнт інтенсивності напружень *K*₁(*t*) згідно з (5) такий:

$$K_1(t) = \frac{4\sigma_0 \upsilon_s}{\upsilon_p \sqrt{\pi \upsilon_p}} \sqrt{\upsilon_p^2 - \upsilon_s^2} \operatorname{Re}\left[\sqrt{t} - \sqrt{t - T}\right].$$
(11)

У випадку нескінченно довгого імпульсу ($T \rightarrow \infty$) із виразу (11) отримаємо

$$K_1(t) = \frac{4\sigma_0 \upsilon_s \sqrt{t} \sqrt{\upsilon_p^2 - \upsilon_s^2}}{\upsilon_p \sqrt{\pi \upsilon_p}}.$$
 (12)

Під час дії миттєвого імпульсу ($T \rightarrow 0$)

$$K_{1}(t) = \frac{2\sigma_{0}\upsilon_{s}T}{\upsilon_{p}\sqrt{\pi\upsilon_{p}t}}\sqrt{\upsilon_{p}^{2} - \upsilon_{s}^{2}} = \frac{2P\upsilon_{s}}{\upsilon_{p}\sqrt{\pi\upsilon_{p}t}}\sqrt{\upsilon_{p}^{2} - \upsilon_{s}^{2}}, \quad (13)$$

де $\sigma_0 T = P$ (P – величина імпульсу).

Під час дії гармонічної хвилі, що описується залежністю $\sigma(t) = \sigma_0 \cos \omega_1 t$, (14)

комплексна спектральна характеристика визначається за формулою [7]:

$$\sigma(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos \omega_1 t \cdot e^{j\omega t} d\omega = \frac{\sigma_0 \sqrt{\pi}}{\sqrt{2}} \left[\delta(\omega - \omega_1) + \delta(\omega + \omega_1) \right]_{t} (15)$$

де $\delta(\omega - \omega_1); \delta(\omega + \omega_1)$ – дельта-функції.

Підставивши (15) у залежність (1), отримаємо

$$K_{1}(t) = (1+j) \frac{\sigma_{0} \upsilon_{s} \sqrt{\upsilon_{p}^{2} + \upsilon_{s}^{2}}}{\upsilon_{p} \sqrt{2} \upsilon_{p}} \int_{-\infty}^{\infty} [\delta(\omega - \omega_{1}) + \delta(\omega + \omega_{1})] \frac{e^{-j\omega t}}{\sqrt{\omega}} d\omega .$$
(16)

Враховуючи фільтрувальну властивість δ-функції, знайдемо значення інтеграла

$$\int_{-\infty}^{\infty} \left[\delta(\omega - \omega_1) + \delta(\omega + \omega_1) \right] \frac{e^{-j\omega_t}}{\sqrt{\omega}} d\omega = \frac{e^{-j\omega_t t}}{\sqrt{\omega_1}} - j \frac{e^{j\omega_t t}}{\sqrt{\omega_1}} = \frac{1}{\sqrt{\omega_1}} \left[(\cos\omega_1 t - j \sin\omega_1 t) - j (\cos\omega_1 t + j \sin\omega_1 t) \right] = \frac{(1 - j)}{\sqrt{\omega_1}} (\cos\omega_1 t + \sin\omega_1 t).$$
(17)

Підставивши вираз (17) у залежність (16), одержимо

$$K_{1}(t) = (1+j)\frac{\sigma_{0}\upsilon_{s}\sqrt{\upsilon_{p}^{2}-\upsilon_{s}^{2}}}{\upsilon_{p}\sqrt{2\upsilon_{p}}}\frac{(1-j)}{\sqrt{\omega_{1}}}(\cos\omega_{1}t+\sin\omega_{1}t) =$$

$$= \frac{\sigma_{0}\upsilon_{s}\sqrt{2(\upsilon_{p}^{2}-\upsilon_{s}^{2})}}{\upsilon_{p}\sqrt{\omega_{1}\upsilon_{p}}}(\cos\omega_{1}t+\sin\omega_{1}t) = \frac{2\sigma_{0}\upsilon_{s}\sqrt{\upsilon_{p}^{2}-\upsilon_{s}^{2}}}{\upsilon_{p}\sqrt{\omega_{1}\upsilon_{p}}}\cos\left(\frac{\pi}{4}-\omega_{1}t\right) \cdot$$
(18)

Як приклад розглянемо взаємодію імпульсного збурення з тріщиною, що розміщена в пісковику, для якого густина $\rho = 2500 \text{ кг/м}^3$; $\upsilon_p = 3500 \text{ м/c}$; $\upsilon_s = 1865 \text{ м/c}$ [8]. Тривалість дії імпульсного збурення T = 0,1 с. За таких вихідних даних із формули (11) отримаємо

$$\frac{K_1(t)}{\sigma_0} = 60.2 \operatorname{Re}\left[\sqrt{t} - \sqrt{t - 0.1}\right].$$
(19)

Дані розрахунків за формулою (19) приведено в табл. 1.

Залежність
$$\frac{K_1(t)}{\sigma_0}$$
 від часу *t* при *T* = 0,1 с

$$K_1(t)$$
 $M^{1/2}$
 0
 $13,46$
 $19,03$
 $9,85$
 $7,88$
 $6,05$
 $5,10$
 $4,49$
 $4,06$
 $3,74$
 $3,48$
 $3,09$
 t, c
 0
 $0,05$
 $0,11$
 $0,15$
 $0,2$
 $0,3$
 $0,4$
 $0,5$
 $0,6$
 $0,7$
 $0,8$
 $1,0$
 $K_1(t)$
 $M^{1/2}$
 $2,50$
 $2,15$
 $1,51$
 $1,23$
 $1,06$
 $1,00$
 $0,95$
 $0,78$
 $0,67$
 $0,60$
 $0,75$
 $0,40$
 t, c
 $1,5$
 $2,0$
 $4,0$
 $6,0$
 $8,0$
 $9,0$
 $10,0$
 $15,0$
 $20,0$
 $25,0$
 $30,0$

При *Т*→∞із формули (12) отримаємо

$$\frac{K_1(t)}{\sigma_0} = 60, 2\sqrt{t}$$
 (20)

У разі дії миттєвого імпульсу тривалістю $T=1\cdot10^{-6}$ с із (13)

$$\frac{K_1(t)}{\sigma_0} = \frac{3,01 \cdot 10^{-5}}{\sqrt{t}}.$$
 (21)

Дані розрахунків за виразами (20) і (21) приведено в табл. 2 та 3.

Залежність $\frac{K_1(t)}{\sigma_0}$ від часу t при $T \rightarrow \infty$												
	$\frac{K_1(t)}{\sigma_0}, M^{1/2}$	0	13,4	6 19,03	3 26,92	32,97	38,07	42,57	46,63	53,84	60,20	
	<i>t</i> , c	0	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,8	1,0	
Таблиця 3 Залежність $\frac{K_1(t)}{\sigma_0}$ від часу t при $T \rightarrow 0$ ($T = 1.10^{-6}$ с)												
	$\frac{K_1(t)}{\sigma_0}, \mathbf{M}^{1/2}$	3(0,1	3,01	0,95	0,30	0,09	0,03	0,009	0,003	9·10 ⁻⁴	
	<i>t</i> , c	1.1	10 ⁻¹²	1·10 ⁻¹⁰	1.10-9	1.10-8	1·10 ⁻⁷	1.10-6	1.10-5	1.10-4	1.10-3	

Із даних табл. 1 очевидно, що при t = 9 с коефіцієнт інтенсивності напружень $K_1(t)$ досягає статичного значення $K_1 = 1$ і в подальшому зі зростанням часу повільно зменшується. Максимального значення коефіцієнт K_1 досягає при t = 0,1 с.

У табл. 2 та 3 приведено значення параметра $\frac{K_1(t)}{\sigma_0}$ для двох граничних випадків, які на практиці не реалізуються.

Характер зміни коефіцієнта інтенсивності напружень $K_I(t)$ для різних значень параметра T показано на рис. 1 (крива I при T = 0,1 с; 2 – при $T \rightarrow \infty$; 3 – при $T \rightarrow 0$).

Під час дії на тріщину гармонічної хвилі

$$\sigma(t) = \sigma_0 \cos 1800t$$

в її вершині виникає поле напружень, що характеризується коефіцієнтом інтенсивності напружень, який згідно з залежністю (18) має вигляд:

$$\frac{K_1(t)}{\sigma_0} = 1,2575\cos(0,7854 - 1800t).$$
(22)

Залежність (22) одержано за попередніх вихідних даних: $\rho = 2500$ кг/м³; $\upsilon_p = 3500$ м/с; $\upsilon_s = 1865$ м/с та $\omega_1 = 1800$ с⁻¹.

Поведінку коефіцієнта інтенсивності напружень зображено на рис. 2.

Дослідимо характер зміни коефіцієнта $K_1(\omega_1)$ за фіксованих часових параметрів залежно від кругової частоти ω_1 .

Із виразу (18) при $t_1 = 3,93 \cdot 10^{-5}$ с і $t_2 = 3,93 \cdot 10^{-3}$ с отримаємо

$$\frac{K_1(\omega_1)}{\sigma_0} = 53,352 \frac{\cos(3,93 \cdot 10^{-5} \omega_1 - 0,7854)}{\sqrt{\omega_1}}; \quad (23)$$

$$\frac{K_1(\omega_1)}{\sigma_0} = 53,352 \frac{\cos(3,93 \cdot 10^{-3}\omega_1 - 0,7854)}{\sqrt{\omega_1}}.$$
 (24)

Розрахунки, здійснені за формулами (23) та (24), приведено в табл. 4 та 5 відповідно.

Таблиця 4

Залежність $\frac{K_1(\omega_1)}{\sigma_0}$ від кругової частоти ω_1

при $t_1 = 3,93 \cdot 10^{-5}$ с під час дії на тріщину гармонічної хвилі

$\frac{K_1(\omega_1)}{\sigma_0}$, M ^{1/2}	1,93	3,78	2,69	1,72	1,24	1,03	0,91	0,63	0,49	0,38	0,28	0,19	0,09
<i>t</i> , c	10	100	200	500	1000	1500	2000	5000	1·10 ⁴	2·104	3·10 ⁴	4·10 ⁴	5·10 ⁴
$lg\omega_l$	1	2	2,30	2,70	3,0	3,18	3,30	3,70	4,0	4,30	4,48	4,60	4,70

Таблиця 5

Залежність $\frac{K_1(\omega_1)}{\sigma_1}$ від кругової частоти ω_1

при $t_2 = 3,93 \cdot 10^{-3}$ с під час дії на тріщину гармонічної хвилі

$\frac{K_1(\omega_1)}{\sigma_0}, M^{1/2}$	12,39	4,93	3,77	0,91	0	-1,34	-1,68	0	1,26	0	-1,04
ω ₁ , c ¹	10	100	200	500	600	800	1000	1400	1800	2200	2600
$lg\omega_1$	1,0	2,0	2,30	2,70	2,78	2,90	3,0	3,14	3,25	3,34	3,41
$\frac{K_1(\omega_1)}{\sigma_0}, M^{1/2}$	0	0,91	0	-0,82	0	0,75	0	-0,70	0	0,66	0
ω ₁ , c ¹	3000	3400	3800	4200	4600	5000	5400	5800	6200	6600	7000
$\lg \omega_1$	3,48	3,53	3,58	3,62	3,66	3,70	3,73	3,76	3,82	3,84	3,90

За даними табл. 4 та 5 на рис. 3 приведено залежності $\frac{K_1(\omega_1)}{\sigma_0}$ від кругової частоти за фіксованих значень часу: $t_1 = 3,93 \cdot 10^{-5}$ с (крива 1); $t_2 = 3,93 \cdot 10^{-3}$ с (крива 2).

Значення частот ω_1 відкладено в логарифмічних координатах. Із рис. З та даних табл. 4 і 5 видно, що коефіцієнт $K_1(\omega_1)$ перевищує статичне значення в діапазоні

Список використаних джерел

- Курленя М.В. Определение области вибросейсмического воздействия на месторождение нефти с дневной поверхности / М.В. Курленя, С.В. Сердюков // ФТРПИ. – 1999. – № 4. – С. 4–11.
- **2.** Партон В.З. Механика разрушения: от теории к практике / В.З. Партон. – М.: Наука, 1990. – 240 с.
- Нагорный В.П. Исследование повышения эффективности пузырькового режима течения флюидов / В.П. Нагорный, И.И. Денисюк, В.М. Лихван, Т.А. Швейкина // Нефтяное хозяйство. – 2013. – № 5. – С. 80–82.
- Черепанов Г.П. Механика хрупкого разрушения / Г.П. Черепанов. – М.: Наука, 1974. – 640 с.
- Ионов В.Н. Динамика разрушения деформируемого тела / В.Н. Ионов, В.В. Селиванов. – М.: Машиностроение, 1987. – 272 с.

кругових частот $\omega_1 = (10...1500)$ Гц (для $t_1 = 3,93 \cdot 10^{-5}$ с) (крива 1); у момент $t_2 = 3,93 \cdot 10^{-3}$ с (крива 2) коефіцієнт $K_1(\omega_1)$ перевищує статичне значення коефіцієнта інтенсивності напружень у діапазонах кругових частот $\omega_1 = (10...450)$ Гц; $\omega_1 = (750...1200)$ Гц і $\omega_1 = (1650...1750)$ Гц, а в подальшому зі зростанням частоти ω_1 поступово згасає.

Висновок

Отже, у результаті проведених теоретичних досліджень визначено коефіцієнт інтенсивності напружень $K_1(t)$ у вершині тріщини нормального розриву за різних режимів її імпульсно-хвильового навантаження. Знаючи коефіцієнти $K_1(t)$, можна визначити поле напружень у гірській породі у вершинах тріщин. Відомо, що існує зв'язок між інтенсивністю вивільнення енергії тріщиною в її вершині і полем напружень [4, 9, 10].

Одержані результати можуть бути використані під час розробки нових імпульсно-хвильових методів оброблення нафтогазових пластів, що базуються на вивільненні внутрішньої енергії структурними елементами геосередовища пластів.

- Справочник по специальным функциям / Под ред. М. Абрамовица, И. Стиган. – М.: Наука, 1979. – 830 с.
- Иванов В.А. Математические основы теории автоматического регулирования / В.А. Иванов, В.С. Медведев, Б.К. Чемоданов, А.С. Ющенко. – Т. 2. – М.: Высшая школа, 1977. – 456 с.
- Нагорний В.П. Імпульсні методи інтенсифікації видобутку вуглеводнів / В.П. Нагорний, І.І. Денисюк. – К.: Ессе, 2012. – 323 с.
- Друкованый М.Ф. Действие взрыва в горных породах / М.Ф. Друкованый, В.М. Комир, В.М. Кузнецов. – К.: Наук. думка, 1973. – 184 с.
- Сиратори М. Вычислительная механика разрушения / М. Сиратори, Т. Миёси, Х. Мацусита. – М.: Мир, 1986. – 334 с.

Імпорт і транзит газу

У 2015 р. в Україну імпортовано 16,5 млрд. м³ природного газу, що на 3,0 млрд м³ менше, ніж у 2014 р. Якщо у 2014 р. основним експортером газу в Україну була Російська Федерація (14,5 млрд м³), то у 2015 р. постачання газу з цієї країни скоротилося у 2,4 раза і становило 6,1 млрд м³. Основні обсяги газу (10,3 млрд м³, або 63 % від загального імпорту) поставлено з країн ЄС.

Транзит газу територією України у 2015 сягав 67,1 млрд м³ проти 62,2 млрд м³ у 2014 р.

За матеріалами http://mpe.kmu.gov.ua/minugol/control/ uk/publish/article?art_id=245086132&cat_id=35081