плекса треба визначити умовну область Ω , яка б включала в себе пункти A_1 , A_2 , A_3 ,..., границя якої проходила б через населені пункти B_1 , B_2 , B_3 ,... В пунктах, що розташовані на границі області Ω треба зробити заміри концентрацій шкідливих речовин, після чого виконати відповідні процедури по обчисленню концентрацій в пунктах, що знаходяться всередині області Ω (A_1 , A_2 , A_3 ,...) згідно з методикою способу обертання симплекса. 1. Семчук Я. М., Камаєва І. О. Математична модель розсіювання шкідливих речовин у приземному шарі атмосфери // Прикладные проблемы математического моделирования. Вестник Херсонского государственного технического университета. Спецвыпуск. - 1999. - С. 155-158. 2. Звіт по науководослідній роботі НДІ "Галургія". Івано-Франківськ, 1994. – 30 с.

УДК 532.137:681.2

ВИЗНАЧЕННЯ РЕОЛОГІЧНИХ ПАРАМЕТРІВ ТОМАТНИХ КОНЦЕНТРАТІВ ЗА ДОПОМОГОЮ ГІДРОДИНАМІЧНОГО ВИМІРЮВАЛЬНОГО ПРИСТРОЮ

© Крих Г. Б., 2002 Національний університет "Львівська політехніка"

Розглянутий алгоритм встановлення реологічних моделей томатних концентратів та їх реологічних параметрів за вихідними сигналами різниці тиску на гідравлічних опорах гідродинамічних вимірювальних пристроїв.

При створенні автоматизованих технологічних ліній у виробництві харчових продуктів необхідно передбачити неперервний контроль якості напівфабрикатів і кінцевих продуктів. Існуючі хімічні і органолептичні методи оцінки не дозволяють визначити якісний стан напівфабрикату безпосередньо в процесі обробки. Критерієм змін, які відбуваються в харчових дисперсних системах в умовах їх переробки є неперервна зміна їх структурно-механічних (реологічних) властивостей. Маючи значення реологічних параметрів можна, наприклад, розрахувати і в більшості випадків по новому організувати технологічні процеси, інтенсифікувати їх з метою забезпечення виробництва необхідного об'єму продуктів з одночасним покращанням їх якості [1]. Саме тому найбільш перспективними для оцінки якості харчових матеріалів є реологічні методи, оскільки між якістю продукту і його реологічними властивостями можуть бути встановлені залежності, які можна використати не тільки для контролю, але і для регулювання технологічних процесів. Таким чином, неперервне вимірювання і регулювання реологічних властивостей харчових продуктів в технологічних процесах і при їх зберіганні слід вважати одним із основних завдань автоматизації технологічних процесів виробництва харчових продуктів.

Особливістю процесів переробки і транспортування харчових матеріалів, є те, що вони здійснюються при різних швидкостях зсуву. Реологічна поведінка харчових матеріалів в різних діапазонах швидкостей зсуву може описуватися і різними реологічними моделями. Відповідно змінюються і рівняння, що пов'язують реологічні параметри з показниками якості харчових продуктів.

В ряді робіт приведені емпіричні залежності між реологічними параметрами харчових продуктів та їх густиною, концентрацією тощо [1, 2]. Так, наприклад, в роботах [3, 4, 5] представлені результати вимірювання реологічних параметрів томатних концентратів та наведені залежності цих параметрів від вмісту сухих речовин – основного якісного показника продукту.

Розглянемо основні реологічні моделі, які використовують для опису руху томатних продуктів. В роботі [6] запропоновано застосувати модель Оствальда-де-Вааля, яка таким чином описує рух псевдопластичних речовин:

$$\tau = k \cdot \dot{\gamma}^n, \tag{1}$$

 τ - дотичне напруження; $\dot{\gamma}$ - швидкість зсуву; k – показник консистенції; n – індекс текучості.

Модель Оствальда–де-Вааля описує рух неньютонівських рідин, які не мають пластичних властивостей. За даними експериментальних досліджень властивості томатних концентратів, що описуються реологічною моделлю Оствальда–де-Вааля, визначаються значеннями показника консистенції, індексу текучості в таких межах [2]: k = 0,5...100 Па· c^n , n = 0,2...0,4. Діапазон досліджуваних при цьому напружень зсуву та швидкостей зсуву був таким $\dot{\gamma} = 0.5...400 \ c^{-1}$, $\tau = 12...600$ Па.

Наступна модель, якою можна описати реологічну поведінку томатних концентратів - це лінійна в'язкопластична модель Бінгама [2, 7]:

$$\tau = \tau_0 + \eta_p \cdot \dot{\gamma} , \qquad (2)$$

де η_p - пластична в'язкість, τ_0 - граничне напруження зсуву.

Реологічні параметри моделі Бінгама для томатних концентратів змінюються в також в межах: пластична в'язкість $\eta_p = 0,01...1,5$ Па·с, граничне напруження зсуву $\tau_0 = 10...800$ Па.

В роботі [7] реологічну поведінку томатних паст запропоновано описати моделлю Гершеля-Балклі таким чином:

$$\tau = \tau_0 + k \cdot \dot{\gamma}^n \,. \tag{3}$$

Це є трипараметрична реологічна модель. Параметри k і n аналогічні до параметрів моделі Оствальда-де-Вааля. Третій реологічний параметр τ_0 характеризує граничне напруження зсуву речовини. За експериментальними дослідженнями [2] діапазон досліджуваних реологічних параметрів томатних концентратів складав: k=1...200 Па· c^n , n=0,3...0,4; Па, $\tau_0 = 1...500$ діапазон швидкості зсуву c^{-1} $\dot{\gamma} = 0,166...500$ i дотичного напруження τ =30...1200 Па.

Аналіз перерахованих моделей показує, що найбільш доцільно для опису руху томатних концентратів застосувати модель Гершеля-Балклі, оскільки вона трансформується при різних значеннях реологічних параметрів в моделі Оствальда-де-Вааля і модель Бінгама. Так, при $\tau_0 = 0$, n < 1 рівняння Гершеля-Балклі (3) перетворюється у рівняння моделі Оствальда-де-Вааля (1), а при n = 1 і $k = \eta_p$ - у в'язкопластичну модель Бінгама (2). При n=1 і $\tau_0 = 0$ модель Гершеля-Балклі зводиться до звичайного закону Ньютона, що описує рух ньютонівських рідин.

Доведено [3], що томатні концентрати в залежності від концентрації сухих речовин змінюють характер реологічної поведінки від ньютонівської до псевдопластичної і в'язкопластичної.

Для вимірювання реологічних параметрів неньютонівських рідин застосовують гідродинамічні вимірювальні перетворювачі. Такі вимірювальні перетворювачі будуються на циліндричних трубках, капілярах та інших гідравлічних опорах [8].

Для моделі Гершеля-Балклі витратна характеристика капілярної циліндричної трубки довжиною *l* і радіусом *R* має вигляд

n+1

$$F = \frac{n}{n+1} \cdot \frac{8\pi l^3}{k^{1/n} \Delta P^3} \cdot \left(\frac{\Delta P \cdot R}{2 \cdot l} - \tau_0\right)^{\frac{n+1}{n}} \times \left[\left(\frac{\Delta PR}{2l}\right)^2 - \frac{2n}{3n+1} \cdot \left(\frac{\Delta PR}{2l} - \tau_0\right)^2 - \frac{2n\tau_0}{2n+1} \cdot \left(\frac{\Delta PR}{2l} - \tau_0\right)\right],$$
(4)

де F - об'ємна витрата речовини; ΔP - перепад тиску на капілярній трубці; $k, n i \tau_0$ -реологічні па-

раметри моделі.

Для спрощення вигляду витратної характеристики (4) зведемо її до безрозмірної форми. Для цього введемо такі безрозмірні комплекси

$$\beta = \frac{2l\tau_0}{\Delta PR},\tag{5}$$

$$q = \frac{4k^{1/n}F}{\pi R^3 \tau_0^{1/n}},$$
 (6)

де $\beta = 0...1$ - відношення граничного напруження зсуву до напруження на стінці капілярної трубки. Тоді

$$q = \frac{4n}{n+1} \cdot \beta^3 \cdot \left(\frac{1}{\beta} - 1\right)^{\frac{n+1}{n}} \times$$

$$\left(\frac{1}{\beta^2} - \frac{2n}{3n+1} \cdot \left(\frac{1}{\beta} - 1\right)^2 - \frac{2n}{2n+1} \cdot \left(\frac{1}{\beta} - 1\right)\right).$$
(7)

Витратна характеристика (7) при n = 1 перетворюється на рівняння Букінгама, що описує рух лінійної в'язкопластичної рідини

$$q = \frac{1}{\beta} \cdot \left(1 - \frac{4}{3}\beta + \frac{1}{3}\beta^4 \right),$$

або в розмірній формі

$$F = \frac{\pi R^4 \Delta P}{8\eta_p l} \cdot \left(1 - \frac{8}{3} \frac{l\tau_0}{\Delta PR} + \frac{1}{3} \left(\frac{2l\tau_0}{\Delta PR} \right)^4 \right), \qquad (8)$$

а при $\tau_0 = 0$ - рух псевдопластичної рідини

$$q = \frac{4n}{3n+1} \cdot \left(\frac{1}{\beta}\right)^{1/n},$$

або в розмірній формі

$$F = \frac{n}{3n+1} \cdot \pi R^3 \cdot \left(\frac{\Delta PR}{2lk}\right)^{1/n}.$$
 (9)

Слід зауважити, що в рівнянні (9) безрозмірні комплекси q і β формуються за допомогою напруження τ_0 , яке не має фізичного змісту і його значення приймається довільно. Рівняння витратних характеристик (7), (8), (9) є базовими для створення математичних моделей гідродинамічних пристроїв для неперервного вимірювання реологічних параметрів томатних концентратів. Найбільш вживаними гідродинамічними вимірювальними перетворювачами є мостові, які будуються на чотирьох гідравлічних опорах – циліндричних трубках, з'єднаних у мостову вимірювальну схему. А для одночасного визначення різних реологічних параметрів застосовують декілька таких мостових перетворювачів [8]. Функціональна схема вимірювального такого пристрою показана на рис. 1.

Рис. 1. Функціональна схема гідродинамічного пристрою для вимірювання реологічних параметрів

Він складається з мінімум трьох мостових гідродинамічних перетворювачів 2, 3, 4, кожний з яких містить чотири капілярні трубки однакового діаметру і різної довжини. Протилежні плечі моста мають однакову довжину. Мостові перетворювачі відрізняються діаметрами та довжинами капілярних трубок. Вихідними сигналами мостових перетворювачів є перепади тиску у вихідних діагоналях, які із врахуванням скомпенсованих втрат від входових ефектів капілярних трубок можуть бути визначені з представлених витратних характеристик відповідних моделей (7), (8) або (9), в яких замість l підставляють різницю довжин Δl капілярних трубок мостового перетворювача. Ці перепади тиску вимірюються дифманометричними перетворювачами 5, 6, 7, а їх вихідні сигнали постійного струму подаються до обчислювального пристрою 8, в якому розраховуються поточні значення реологічних параметрів для заданих реологічних моделей: Гершеля-Балклі, Оствальда-де-Вааля і Бінгама-Шведова. Значення параметрів показуються за допомогою вимірювального приладу 9. Постійне значення витрати речовини у вимірювальному пристрої створюється дозуючим насосом 1.

Функція обчислювального пристрою полягає в тому, що на основі виміряних значень струму з виходу дифманометрів встановлюється реологічна модель речовини та її параметри. Для розробки алгоритму обробки сигналів дифманометрів були визначені діапазони зміни реологічних параметрів томатних концентратів з вмістом сухих речовин 20÷35 % на 1 кг продукту для різних реологічних моделей:

- для моделі Оствальда-де-Вааля: *k* - 0,5...100 Па· сⁿ; *n* - 0,2...0,3;

- для моделі Гершеля-Балклі: *k* – 1...50 Па·*cⁿ*; *n* - 0,3...0,38; *τ*₀ - 4...100 Па;

- для моделі Бінгама-Шведова: η_p 0,01...0,7 Па· с; τ₀ - 10...400 Па. Діапазон вимірювання ефективної в'язкості 0,0019...3,1 Па с .

Початковими даними для апробації розроблених алгоритмів і програм були значення таких величин:

 витрати томатних концентратів в капілярній трубці гідродинамічного перетворювача;

 конструктивних розмірів капілярних трубок – внутрішні діаметри та різниці довжин між довгими і короткими капілярними трубками в усіх трьох гідродинамічних мостових перетворювачах;

 вихідних струмових сигналів трьох дифманометричних перетворювачів;

- початкових значень реологічних параметрів.

Розрахунок реологічних параметрів томатних концентратів при одержаних вихідних сигналах дифманометричних перетворювачів і заданій витраті насоса зводиться до вирішення оптимізаційної задачі, в якій прийнятий такий критерій оптимальності:

$$P = \sum_{i=1}^{3} (F_{ip} - F_e / 2)^2 , \qquad (10)$$

де F_e - експериментальне (задане) значення витрати насоса; F_{ip} - розраховане значення витрати продукту, яке в залежності від обраної реологічної моделі визначається за однією з витратних характеристик капілярних трубок (7). (8), (9). Перепад тиску у цих характеристиках визначається за виміряними вихідними сигналами постійного струму диференціальних дифманометрів за їх функціями перетворення. Критерій оптимальності (10) записаний відносно витрати томатних концентратів у капілярних трубках F, оскільки для моделі Гершеля-Балклі неможливо аналітично з витратної характеристики визначити перепад тисків ΔP у міжкапілярних камерах гідродинамічного перетворювача.

Виміряним реологічним параметрам томатних концентратів відповідають такі їх значення, які забезпечують мінімум функції (10). Пошук мінімуму функції *P* за залежністю (10) здійснюється в обчислювальному пристрої 8 (див. рис. 1).

Згідно із розробленим алгоритмом ітераційними методами для кожної з розглянутих моделей (1), (2), (3) розраховуються значення реологічних параметрів, при яких значення критерію оптимальності P є мінімальним. З одержаних кінцевих значень критерію оптимальності для трьох вказаних моделей вибирається те, яке виявиться найменшим, і фіксуються відповідні йому реологічні параметри. Таким чином, визначається адекватна реологічна модель контрольованої рідини, а також її параметри. Оптимізаційна задача розрахунку реологічних параметрів томатних концентратів вирішувалась методом багатопараметричної оптимізації Нелдера-Міда. Суть методу полягає у виборі базової точки в площині параметрів та оцінці значення цільової функції в точках, що оточують базову і утворюють симплекс. Для двопараметричних моделей Оствальда-де-Вааля, Бінгама симплексом є трикутник. В загальному для *n*-вимірного простору симплекс має n+1вершину, де *n*- кількість параметрів оптимізації. Зупинка пошуку мінімуму здійснювалась за заданою точністю розрахунку реологічних параметрів або за заданим мінімальним значенням зміни критерію оптимальності. Розроблений алгоритм забезпечує пошук реологічних параметрів в заданих діапазонах їх зміни.

Для прикладу наведемо результати обчислення реологічних параметрів, отриманих при таких значеннях вихідних сигналів дифманометрів: $I_1 = 2,661$ мА, $I_2 = 2,669$ мА, $I_3 = 2,695$ мА.

Результати кінцевого значення критеріїв оптимальності для аналізованих моделей неведені в табл. 1.

Таблиця 1 - Розрахунок значень реологічних параметрів для різних реологічних моделей

Реологіч- на модель	Значення реологі- чних параметрів	Критерій оп- тимальності <i>Р</i> , (м ³ /c) ²
Гершеля- Балклі	$k = 30,85 \Pi a c^{n};$ n = 0,36; $\tau_{0} = 53,4 \Pi a;$	1,6466 • 10 ⁻³⁵
Остваль- да-де- Вааля	$k = 56,26 \Pi a \cdot c^n;$ n = 0,29	6,4563 · 10 ⁻¹⁴
Бінгама- Шведова	$\eta_p = 0,0044 \ \Pi a \cdot c;$ $\tau_0 = 189,00 \ \Pi a$	3,2802 · 10 ⁻¹²

Оскільки для моделі Гершеля-Балклі значення критерію оптимальності є найменшим, то можна вважати, що реологічна поведінка досліджуваного

Методи та прилади контролю якості, № 9, 2002

томатопродукту найкраще описується в'язкопластичною моделлю Гершеля-Балклі.

Застосування запропонованого алгоритму дозволить підвищити точність оперативного вимірювання реологічних параметрів томатних концентратів за рахунок вибору адекватної реологічної моделі.

1. Мачихин Ю. А., Мачихин С. А. Инженерная реология пищевых материалов. – М.: Лёгкая и пищевая промышленность, 1981. – 215 с. 2. Маслов А. М. Инженерная реология в пищевой промышленности. - Л.: ЛТИХП MB и ССО РСФСР, 1997. – 88 с. 3. Гринберг Н. Х. Вязкость и структурномеханические свойства томатопродуктов // Консервная и овощесушильная промышленность. – 1977. -№ 9. – С. 39-40. 4. Крих Г. Б., Кіндер М. І. Визначення концентрації сухих речовин томатних концентратів за їх реологічними параметрами. - Вісник ДУ "Львівська політехніка" "Теплоенергетика. Інженерія довкілля. Автоматизація", № 460 – Львів: Вид-во НУ "Львівська політехніка". – 2002. – С. 117-122. 5. Эпифанов П. В., Ковалева Р. И. О вязкости томатопродуктов // Консервная и овощесушильная промышленность. – 1968. - № 11. – С. 34-38. 6. Яковчик О. Е., Андрюшенко В. К. Исследование консистениии томатной пасты // Консервная и овощесушильная промышленность. – 1980. - № 3. – С. 33-34. 7. Коларов К. М. О некоторых реологических характеристиках томатных концентратов // Известия вузов СССР. Пищевая технология. – 1971. - № 2. – С. 175–177. 8. Пістун Є. П., Крих Г. Б. Принципи побудови гідродинамічних вимірювальних перетворювачів на базі дросельних матриць // Методи та прилади контролю якості. – 2000. - № 5. – *C.* 56-59.