SUM OF ENTIRE FUNCTIONS OF BOUNDED L-INDEX IN DIRECTION

BANDURA ANDRIY

Ivano-Frankivsk National Technical University of Oil and Gas andriykopanytsia@gmail.com

We use definitions and denotations from [1] and [2].

It is known that a product of two entire functions of bounded L-index in direction is a function with the same class (see [2], [4]). But the class of entire functions of bounded index is not closed under addition. The example was constructed by W. Pugh (see [3] and also [5]). Recently we generalized Pugh's example for entire functions of bounded L-index in direction [4].

Meanwhile, there are sufficient conditions of index boundedness for a sum of two entire functions [3].

In this report we present sufficient conditions of boundedness of L-index in direction for a sum of entire functions. They are new for entire functions of bounded l-index too.

We consider an arbitrary hyperplane $A=\{z\in C^n: \langle z,c\rangle=1\}$, where $\langle c,\mathbf{b}\rangle\neq 0$. Obviously that $\bigcup_{z^0\in A}\{z^0+t\mathbf{b}:t\in\mathbb{C}\}=\mathbb{C}^n$.

Let $z^0 \in A$ be a given point. If $F(z^0 + t\mathbf{b}) \neq 0$ as a function of variable $t \in \mathbb{C}$ then there exists $t_0 \in \mathbb{C}$ $F(z^0 + t_0\mathbf{b}) \neq 0$. Thus, for every line $\{z^0 + t\mathbf{b} : F(z^0 + t\mathbf{b}) \neq 0\}$ we fixed one point t_0 with specified property. By B we denote a union of those points $z^0 + t_0\mathbf{b}$ i. e. $B = \bigcup_{\substack{z^0 \in A \\ F(z^0 + t\mathbf{b}) \neq 0}} \{z^0 + t_0\mathbf{b}\}$. Clearly that

for every $z \in \mathbb{C}^n$ there exist $z^0 \in A$ and $t \in \mathbb{C}$ with property $z = z^0 + t\mathbf{b}$.

Thus, the next theorem is true.

Theorem 1. Let $L \in Q_b^n$, $\alpha \in (0,1)$ and F, G be the entire in \mathbb{C}^n functions satisfying conditions

- 1) G(z) has bounded L-index in the direction $\mathbf{b} \in \mathbb{C}^n \setminus \{0\}$.
- 2) for every $z=z^0+t\mathbf{b}\in\mathbb{C}^n$, where $z^0\in A$, $z^0+t_0\mathbf{b}\in B$ and $r=|t-t_0|L(z^0+t\mathbf{b})$ the following inequality is valid

$$\max \left\{ |F(z^0 + t'\mathbf{b})| : |t' - t_0| = \frac{2r}{L(z^0 + t\mathbf{b})} \right\} \leqslant$$

$$\leqslant \max \left\{ \frac{1}{k!L^k(z^0 + t\mathbf{b})} \left| \frac{\partial^k G(z^0 + t\mathbf{b})}{\partial \mathbf{b}^k} \right| : 0 \leqslant k \leqslant N_{\mathbf{b}}(G_{\alpha}, L_{\alpha}) \right\}.$$

$$\beta) \ c = \sup_{z^0 + t_0 \mathbf{b} \in B} \frac{\max \left\{ |F(z^0 + t'\mathbf{b})| : \ |t' - t_0| = \frac{2\lambda_2^{\mathbf{b}}(1)}{L(z^0 + t_0 \mathbf{b})} \right\}}{|F(z^0 + t_0 \mathbf{b})|} < \infty.$$

If $|\varepsilon| \leq \frac{1-\alpha}{2c}$ then the function

$$H(z) = G(z) + \varepsilon F(z)$$

is of bounded L-index in the direction **b** with $N_{\mathbf{b}}(H,L) \leq N_{\mathbf{b}}(G_{\alpha},L_{\alpha})$, where $G_{\alpha}(z) = G(z/\alpha)$, $L_{\alpha}(z) = L(z/\alpha)$.

References

- Bandura A. I., Skaskiv O. B. Open problems for entire functions of bounded index in direction, Mat. Stud., 43 (2015), No 1, 103-109. dx.doi.org/10.15330/ms.43.1.103-109
- Bandura A., Skaskiv O. Entire functions of several variables of bounded index, Lviv: Publisher I. E. Chyzhykov, 2016, 128 p. https://arxiv.org/abs/1508.07486
- [3] Pugh W. J. Sums of functions of bounded index, Proc. Amer. Math. Soc. 22 (1969), 319-323.
- [4] Bandura A. I. Product of two entire functions of bounded L-index in direction is a function with the same class, Bukovyn. Mat. Zh. (in Ukrainian, accepted)
- [5] Sheremeta M. Analytic functions of bounded index, Lviv: VNTL Publishers, 1999, 141 p.

ON FOURIER QUASICRYSTALS

FAVOROV SERGII YURIYOVYCH Karazin Kharkiv national university sfavorov@gmail.com

A Fourier quasicrystal is a pure point complex measure μ on \mathbf{R}^p such that its Fourier transform in the sense of distributions $\hat{\mu}$ is also a pure point measure. For example, the sum σ of unit masses at the points of $\mathbf{Z}^p \subset \mathbf{R}^p$ is a Fourier quasicrystal, because $\hat{\sigma} = \sigma$ in view of the Poisson summation formula. The support of $\hat{\mu}$ is called spectrum of the Fourier quasicrystal. A set $S \subset \mathbf{R}^p$ is called uniformly discrete if distances between its distinct points are uniformly bounded away from zero. S is called a pure crystal, if it is a finite union of translates of a unique full-rank lattice.

At first we show some new conditions for Fourier transform of measures and distributions to be a measure.

Then we consider a Fourier quasicrystal μ with discrete support Λ . N.Lev, A.Olevskii (2016) proved that if the spectrum of μ and the set of differences $\Lambda - \Lambda$ are both uniformly discrete, then Λ is a subset of a pure crystal.