SUM OF ENTIRE FUNCTIONS OF BOUNDED
L-INDEX IN DIRECTION

BANDURA ANDRIY
Ivano-Frankivsk National Technical University of Oil and Gas
andriykopanytsia@gmail.com

We use definitions and denotations from [1] and [2].

It is known that a product of two entire functions of bounded L-index in
direction is a function with the same class (see [2], [4]). But the class of entire
functions of bounded index is not closed under addition. The example was
constructed by W. Pugh (see [3] and also [5]). Recently we generalized Pugh’s
example for entire functions of bounded L-index in direction [4].

Meanwhile, there are sufficient conditions of index boundedness for a sum of
two entire functions [3].

In this report we present sufficient conditions of boundedness of L-index in
direction for a sum of entire functions. They are new for entire functions of
bounded l-index too.

We consider an arbitrary hyperplane $A = \{ z \in \mathbb{C}^n : \langle z, c \rangle = 1 \}$, where
$\langle c, b \rangle \neq 0$. Obviously that $\bigcup_{z_0 \in A} \{ z_0 + t b : t \in \mathbb{C} \} = \mathbb{C}^n$.

Let $z_0 \in A$ be a given point. If $F(z_0 + t b) \neq 0$ as a function of variable $t \in \mathbb{C}$ then there exists $t_0 \in \mathbb{C}$ $F(z_0 + t_0 b) \neq 0$. Thus, for every line $\{ z_0 + t b : F(z_0 + t b) \neq 0 \}$ we fixed one point t_0 with specified property. By B we denote
a union of those points $z_0 + t_0 b$ i. e. $B = \bigcup_{F(z^0 + tb) \neq 0} \{ z_0 + t_0 b \}$. Clearly that
for every $z \in \mathbb{C}^n$ there exist $z_0 \in A$ and $t \in \mathbb{C}$ with property $z = z_0 + t b$.

Thus, the next theorem is true.

Theorem 1. Let $L \in Q_b^n$, $\alpha \in (0, 1)$ and F, G be the entire in \mathbb{C}^n functions
satisfying conditions

1) $G(z)$ has bounded L-index in the direction $b \in \mathbb{C}^n \setminus \{0\}$.
2) for every $z = z_0 + t b \in \mathbb{C}^n$, where $z_0 \in A$, $z_0 + t_0 b \in B$ and $r = |t - t_0| L(z_0 + t b)$ the following inequality is valid

$$\max \left\{ \frac{1}{k! L^k (z_0 + t b)} \left| \frac{\partial^k G(z_0 + t b)}{\partial b^k} \right| : 0 \leq k \leq N_b(G_{\alpha}, L_{\alpha}) \right\} \leq$$

$$\leq \max \left\{ \frac{2r}{L(z_0 + t b)} \right\} \leq$$

$$\leq \max \left\{ \frac{1}{k! L^k (z_0 + t b)} \left| \frac{\partial^k G(z_0 + t b)}{\partial b^k} \right| : 0 \leq k \leq N_b(G_{\alpha}, L_{\alpha}) \right\} .$$
\[c = \max_{z^0+t_0 \in B} \frac{\|F(z^0+t'b)\| : \|t'-t_0\| = \frac{2\lambda_b(1)}{L(z^0+t_0b)}}{|F(z^0+t_0b)|} < \infty. \]

If \(|\varepsilon| \leq \frac{1-\alpha}{2c} \) then the function

\[H(z) = G(z) + \varepsilon F(z) \]

is of bounded \(L \)-index in the direction \(b \) with \(N_b(H,L) \leq N_b(G_\alpha,L_\alpha), \) where \(G_\alpha(z) = G(z/\alpha), \) \(L_\alpha(z) = L(z/\alpha). \)

References

[4] Bandura A. I. Product of two entire functions of bounded \(L \)-index in direction is a function with the same class, Bukovyn. Mat. Zh. (in Ukrainian, accepted)

ON FOURIER QUASICRYSTALS

FAVOROV SERGIY YURIYOVYCH
Karazin Kharkiv national university
sfavorov@gmail.com

A Fourier quasicrystal is a pure point complex measure \(\mu \) on \(\mathbb{R}^p \) such that its Fourier transform in the sense of distributions \(\hat{\mu} \) is also a pure point measure. For example, the sum \(\sigma \) of unit masses at the points of \(\mathbb{Z}^p \subset \mathbb{R}^p \) is a Fourier quasicrystal, because \(\hat{\sigma} = \sigma \) in view of the Poisson summation formula. The support of \(\hat{\mu} \) is called spectrum of the Fourier quasicrystal. A set \(S \subset \mathbb{R}^p \) is called uniformly discrete if distances between its distinct points are uniformly bounded away from zero. \(S \) is called a pure crystal, if it is a finite union of translates of a unique full-rank lattice.

At first we show some new conditions for Fourier transform of measures and distributions to be a measure.

Then we consider a Fourier quasicrystal \(\mu \) with discrete support \(\Lambda \). N.Lev, A.Olevskii (2016) proved that if the spectrum of \(\mu \) and the set of differences \(\Lambda - \Lambda \) are both uniformly discrete, then \(\Lambda \) is a subset of a pure crystal.