Skip navigation
Please use this identifier to cite or link to this item: http://elar.nung.edu.ua/handle/123456789/3668
Title: Mathematical Modeling of Horizontal Displacement of Above-Ground Gas Pipelines
Authors: Kukhtar, D.
Keywords: above-ground pipeline
thermal displacement
dynamic model
geodetic control
Issue Date: 2017
Publisher: EUREKA: Physics and Enginnering
Citation: Mathematical Modeling of Horizontal Displacement of Above-Ground Gas Pipelines / Kukhtar, D // EUREKA: Physics and Enginnering.
Abstract: The modern geodetic equipment allows observations as soon as possible, providing high accuracy and productivity. Achieving high accuracy of measurement is impossible without taking into account external factors that create influence on an observation object. Therefore, in order to evaluate an influence of thermal displacement on the results of geodetic monitoring a mathematical model of horizontal displacement of above-ground pipelines was theoretically grounded and built. In this paper we used data of experimental studies on the existing pipelines “Soyuz” and “Urengoy-Pomary-Uzhgorod”. Above-ground pipeline was considered as a dynamic system “building-environment”. Based on the characteristics of dynamic systems the correlation between the factors of thermal influence and horizontal displacement of the pipeline axis was defined. Establishing patterns between input factors and output response of the object can be useful not only for geodetic control, but also for their consideration in the design of new objects. It was investigated that the greatest influence on the accuracy of geodetic observations can create dispersion of high-frequency oscillations caused by daily thermal displacement. The magnitude of displacement exceeds actual measurement error. The article presents the results of calculation of high-frequency oscillations of above-ground gas pipeline. The result made it possible to substantiate the accuracy and methodology of geodetic observations of the horizontal displacement of pipeline axes taking into account an influence of cyclical thermal displacement. Research results were recommended for use in practice for enterprises that serve the main gas pipelines and successfully tested by specialists of PJSC “Ukrtransgaz” (Kharkiv, Ukraine) during the technical state control of aerial pipeline crossing in Ukraine and also can be used to form the relevant regulations.
URI: http://elar.nung.edu.ua/handle/123456789/3668
Appears in Collections:Статті та тези науковців ІФНТУНГ

Files in This Item:
File Description SizeFormat 
5693p.pdf617.03 kBAdobe PDFView/Open
Show full item record   Google Scholar


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.